On Sums of Conditionally Independent Subexponential Random Variables

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Sums of Conditionally Independent Subexponential Random Variables

The asymptotic tail-behaviour of sums of independent subexponential random variables is well understood, one of the main characteristics being the principle of the single big jump. We study the case of dependent subexponential random variables, for both deterministic and random sums, using a fresh approach, by considering conditional independence structures on the random variables. We seek suff...

متن کامل

Conditionally independent random variables

In this paper we investigate the notion of conditional independence and prove several information inequalities for conditionally independent random variables. Keywords— Conditionally independent random variables, common information, rate region.

متن کامل

Weighted Sums of Subexponential Random Variables and Their Maxima

Let {Xk, k = 1, 2, . . .} be a sequence of independent random variables with common subexponential distribution F , and let {wk, k = 1, 2, . . .} be a sequence of positive numbers. Under some mild summability conditions, we establish simple asymptotic estimates for the extreme tail probabilities of both the weighted sum ∑n k=1 wkXk and the maximum of weighted sums max1≤m≤n ∑m k=1 wkXk , subject...

متن کامل

Asymptotic Tail Probabilities of Sums of Dependent Subexponential Random Variables

In this paper we study the asymptotic behavior of the tail probabilities of sums of dependent and real-valued random variables whose distributions are assumed to be subexponential and not necessarily of dominated variation. We propose two general dependence assumptions under which the asymptotic behavior of the tail probabilities of the sums is the same as that in the independent case. In parti...

متن کامل

Asymptotics for Sums of Random Variables with Local Subexponential Behaviour

We study distributions F on [0,.) such that for some T [., Fg (x, x+T] ’ 2F(x, x+T]. The case T=. corresponds to F being subexponential, and our analysis shows that the properties for T <. are, in fact, very similar to this classical case. A parallel theory is developed in the presence of densities. Applications are given to random walks, the key renewal theorem, compound Poisson process and Be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Operations Research

سال: 2010

ISSN: 0364-765X,1526-5471

DOI: 10.1287/moor.1090.0430